

Importation of fresh immature coconut (*Cocos nucifera* L.) from Viet Nam into the United States for consumption

A Qualitative, Pathway Initiated Pest Risk Assessment

Version 2

January 6, 2023

Agency contact Plant Pest Risk Analysis (PPRA) Science and Technology (ST) Plant Protection and Quarantine (PPQ) Animal and Plant Health Inspection Service (APHIS) United States Department of Agriculture (USDA) 920 Main Campus Drive, Suite 400 Raleigh, NC 27606

Executive Summary

The purpose of this report is to assess the pest risks associated with importing commercially produced immature fresh fruits of coconut, *Cocos nucifera* L. (Aracaceae), from Viet Nam into the United States for consumption.

Based on the market access request submitted by Viet Nam, we considered the pathway to include the following processes and conditions: the harvest of immature coconut fruit, where obviously rotten or fallen fruit are discarded in the field. We considered the post-harvest treatment to be removal of at least 75% of the outermost layer (exocarp) and trimming of the husk (mesocarp), resulting in the final marketable product. Immature coconut fruit has a green husk that turns brown at peak maturity. We considered immature fruit where the green husk is completely removed. The pest risk ratings depend on the application of all conditions of the pathway as described in this document; immature fresh fruits of coconut produced under different conditions were not evaluated and may pose a different pest risk.

We used scientific literature, port-of-entry pest interception data, and information from the government of Viet Nam to develop a list of pests with quarantine significance for the PRA area. These are pests that occur in Viet Nam on any host and are associated with the commodity plant species anywhere in the world.

We found no organisms that met the threshold for unacceptable consequences of introduction and can follow the pathway.

The detailed examination and choice of appropriate phytosanitary measures to mitigate pest risk are addressed in a separate document.

Table of Contents

Executive Summary	2
1. Introduction	4
1.1. Background	4
1.2. Initiating event	4
1.3. Potential weediness of the commodity	4
1.4. Description of the pathway	4
2. Pest List and Pest Categorization	5
2.1. Pest list	5
2.2. Notes on pests identified in the pest list	9
2.3. Pests considered but not included on the pest list 1	0
2.4. Pests selected for further analysis or already regulated 1	0
3. Summary 1	0
4. Literature Cited 1	1
5. Appendix: Pests with non-quarantine status1	15

1. Introduction

1.1. Background

The purpose of this report is to present PPQ's assessment of the pest risk associated with the importation of commercially produced immature fresh fruit of coconut (*Cocos nucifera* L.) from Viet Nam (referred to as the export area) into the United States¹ (referred to as the pest risk analysis or PRA area) for consumption.

This is a qualitative risk assessment. The likelihood of pest introduction is expressed as a qualitative rating rather than using numerical terms. This methodology is consistent with guidelines provided by the International Plant Protection Convention (IPPC) in the International Standard for Phytosanitary Measures (ISPM) No. 11, "Pest Risk Analysis for Quarantine Pests" (IPPC, 2021). The use of biological and phytosanitary terms is consistent with ISPM No. 5, "Glossary of Phytosanitary Terms" (IPPC, 2022).

As defined in ISPM No. 11, this document comprises Stage 1 (Initiation) and Stage 2 (Risk Assessment) of risk analysis. Stage 3 (Risk Management) will be covered in a separate document.

1.2. Initiating event

The importation of fruits and vegetables for consumption into the United States is regulated under Title 7 of the Code of Federal Regulations, Part 319.56-3 (7 CFR §319.56) and as described in the <u>Agricultural Commodity Import Requirements</u>. Under this regulation, the entry of coconut fruit from Viet Nam into the United States is not authorized. This commodity risk assessment was initiated in response to a request by the government of Viet Nam to change the federal regulation to allow entry (Trung, 2021).

1.3. Potential weediness of the commodity

In some cases, an imported commodity could become invasive in the PRA area. If warranted, we analyze the commodity for weed risk.

A weed risk analysis is not required when (a) the commodity is already enterable into the United States from other countries, (b) the commodity plant species is widely established (native or naturalized) or cultivated in the PRA area, or (c) the imported plant part(s) cannot easily propagate on its own or be propagated. We determined that the weed risk of the commodity does not need to be analyzed because coconut is enterable from other countries to the United States (ACIR, 2022).

1.4. Description of the pathway

¹The *United States* includes all states, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and any other territory or possession of the United States.

A pathway is "any means that allows the entry or spread of a pest" (IPPC, 2022). In the context of this document, the pathway is the commodity to be imported. The following description includes those conditions and processes the commodity undergoes from production through importation and distribution that may have an impact on pest risk and therefore were considered in our assessment. Commodities produced under different conditions were not considered.

1.4.1. Description of the commodity

The specific pathway of concern is the importation of immature fresh fruit of coconut for consumption.

1.4.2. Summary of the production, harvest, post-harvest, shipping, and storage conditions considered

Based on the market access submitted by Viet Nam (Trung, 2021), we considered the pathway to include the harvest of immature coconut fruit, where obviously rotten or fallen fruit are discarded in the field. We considered the post-harvest treatment to be removal of at least 75% of the outermost layer (exocarp) and trimming of the husk (mesocarp) (Trung, 2021), resulting in the final marketable product. Immature coconut fruit has a green husk that turns brown at peak maturity (Siriphanich et al., 2011). We considered immature fruit where the green husk is completely removed.

2. Pest List and Pest Categorization

The pest list is a compilation of plant pests of quarantine significance to the PRA area. This list includes pests that are present in Viet Nam on any host and are known to be associated with *Cocos nucifera* L. anywhere in the world. Pests are considered quarantine significant if they (a) are not present in the PRA area, (b) are actionable at U.S. ports of entry, (c) are regulated non-quarantine pests, (d) are under federal official control, or (e) require evaluation for regulatory action. Consistent with ISPM No. 5, pests that meet any of these definitions are considered "quarantine pests" and are candidates for analysis. Species with a reasonable likelihood of following the pathway into the United States are analyzed to determine their pest risk potential.

2.1. Pest list

We developed the pest list based on scientific literature, port-of-entry pest interception data, and information provided by the government of Viet Nam. We listed the pests that are of quarantine significance to the United States in Table 1. For each pest, we provided evidence for the pest's presence in Viet Nam and its association with *Cocos nucifera*. We indicated the plant parts with which the pest is generally associated and, if applicable, provided information about the pest's distribution in the United States. Pests that are likely to remain associated with the harvested commodity in a viable form are indicated by bolded text and are listed separately in Table 2.

Table 1. List of quarantine pests associated with *Cocos nucifera* anywhere in the world and present in Viet Nam on any host.

Pest name	Presence in Viet Nam	Host association	Plant part(s) ²	Considered further? ³
MITE: Trombidiformes: Tetranychidae <i>Eutetranychus orientalis</i> (Klein)	Bellotti et al., 2012	CABI, 2022	Leaves (CABI, 2022)	No.
INSECT: Coleoptera: Chrysomelidae <i>Brontispa</i> <i>longissima</i> (Gestro)	Trung, 2021	Singh and Rethinam, 2004	Leaves (Singh and Rethinam, 2004)	No.
INSECT: Coleoptera: Curculionidae <i>Rhynchophorus</i> <i>ferrugineus</i> (Oliver)	CABI, 2022	CABI, 2022	Stem (CABI, 2022)	No.
INSECT: Coleoptera: Curculionidae <i>Xyleborus</i> <i>perforans</i> (Wollaston)	CABI, 2022	CABI, 2022	Stems (CABI, 2022)	No.
INSECT: Coleoptera: Curculionidae <i>Xyleborus</i> <i>similis</i> Ferrari	CABI, 2022	CABI, 2022	Stems (CABI, 2022)	No.
INSECT: Coleoptera: Scarabaeidae Anomala cupripes Hope	Waterhouse, 1993	Waterhous e, 1993	Leaves (Waterhouse, 1993)	No.
INSECT: Coleoptera: Scarabaeidae Oryctes rhinoceros (Linnaeus)	Trung, 2021	Waterhous e, 1993	Stem, leaves (CABI, 2022)	No.
INSECT: Coleoptera: Scarabaeidae <i>Xylotrupes</i> <i>gideon</i> (Linnaeus)	Trung, 2021	Bedford, 1974	Stems, flowers (Bedford, 1974)	No.
INSECT: Hemiptera: Aleyrodidae Aleurocanthus spiniferus (Quaintance)	PHÁP and CÚU, 2011	Evans, 2007	Leaves (Health et al., 2018)	No. Present in Hawaii (Paulson and Kumashiro, 1985).
INSECT: Hemiptera: Aleyrodidae Aleurocanthus woglumi Ashby	CABI, 2022	CABI, 2022	Leaves (Schrader et al., 2019)	No. Present in Florida, Hawaii, Texas (Schrader et al., 2019), and Puerto Rico (Evans, 2008).
INSECT: Hemiptera: Aleyrodidae <i>Aleurodicus</i> <i>destructor</i> Mackie	CABI, 2022	CABI, 2022	Leaves (CABI, 2022)	No.
INSECT: Hemiptera: Coccidae <i>Ceroplastes</i> <i>rubens</i> Maskell	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves, stems, twigs (Miller et al., 2014)	No.

² The plant part(s) listed are those for the plant species under analysis. If the information has been extrapolated, such as from plant part association on other plant species, we note that.

³ "Yes" indicates simply that the pest has a reasonable likelihood of being associated with the harvested commodity; the level of pest prevalence on the harvested commodity (low, medium, or high) is qualitatively assessed as part of the Likelihood of Introduction assessment (section 3).

Pest name	Presence in Viet Nam	Host association	Plant part(s) ²	Considered further? ³
INSECT: Hemiptera: Coccidae <i>Ceroplastes</i> <i>rusci</i> (Linnaeus)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves, stems, branches, and Fruit (Miller et al., 2014)	No. The insect is an external feeder and would be removed with the exocarp.
				Present in Florida and Puerto Rico (Garcia Morales et al., 2016). Quarantine for Hawaii, Guam, Northern Mariana Islands, and American Samoa (ARM, 2022).
INSECT: Hemiptera: Pseudococcidae <i>Coccidohystrix insolita</i> Green	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves, stems, branches, and Fruit (Miller et al., 2014)	No. The insect is an external feeder and would be removed with the exocarp.
				Present in Guam (Garcia Morales et al., 2016).
INSECT: Hemiptera: Pseudococcidae Dysmicoccus lepelleyi (Betrem)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves (Garcia Morales et al., 2016)	No.
INSECT: Hemiptera: Pseudococcidae Dysmicoccus neobrevipes Beardsley	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Roots (Garcia Morales et al., 2016)	No.
INSECT: Hemiptera: Pseudococcidae <i>Exallomochlus hispidus</i> (Morrison)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Stem, shoot, leaf, flower, fruit (Indarwatmi et al., 2021)	No. The mealybugs are on the surface of the fruit (Indarwatmi et al., 2021), and would be removed with the exocarp.
INSECT: Hemiptera: Pseudococcidae Formicococcus polysperes Williams	Firake et al., 2015	Firake et al., 2015	Roots (Firake et al., 2015)	No.
INSECT: Hemiptera: Pseudococcidae <i>Nipaecoccus viridis</i> (Newstead)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves (Garcia Morales et al., 2016)	No. Present in the U.S., but quarantine for American Samoa, Puerto Rico, and the U.S. Virgin Islands (ARM, 2022).
INSECT: Hemiptera: Pseudococcidae <i>Palmicultor palmarum</i> (Ehrhorn)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves (Garcia Morales et al., 2016)	No. Present in the U.S., but quarantine for Guam, Puerto Rico, and the U.S. Virgin Islands (ARM, 2022).

Pest name	Presence in Viet Nam	Host association	Plant part(s) ²	Considered further? ³
INSECT: Hemiptera: Pseudococcidae <i>Planococcus lilacinus</i> (Cockerell)	Trung, 2021	Arokiyaraj et al., 2022	Leaves, flowers, stems (Arokiyaraj et al., 2022)	No.
INSECT: Hemiptera: Pseudococcidae <i>Pseudococcus cryptus</i> Hempel	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Roots, leaves, stems (Garcia Morales et al., 2016)	No.
INSECT: Hemiptera: Pseudococcidae <i>Rastrococcus spinosus</i> (Robinson)	Garcia Morales et al., 2016	Garcia Morales et al., 2016	Leaves (Khoo et al., 1991	No.
INSECT: Hemiptera: Tingidae <i>Stephanitis</i> <i>typica</i> (Distant)	Trung, 2021	Mathen et al., 1988	Leaves (Mathen et al., 1988)	No. Implicated in transmitting diseases (Mathen et al., 1988).
INSECT: Isoptera: Rhinotermitidae <i>Coptotermes</i> <i>curvignathus</i> (Holmgren)	Trung, 2021	CABI, 2022	Roots and stems (CABI, 2022)	No.
INSECT: Lepidoptera: Crambidae Cnaphalocrocis medinalis (Guenée)	Trung, 2021	CABI, 2022	Leaves (CABI, 2022)	No.
INSECT: Lepidoptera: Erebidae Orgyia turbata Butler	CABI, 2022	Waterhous e, 1993	Leaves (Waterhouse, 1993)	No.
INSECT: Lepidoptera: Hesperiidae <i>Erionota</i> <i>thrax</i> (L.)	Trung, 2021	Okolle et al., 2010	Leaves (Okolle et al., 2010)	No. Present in Hawaii (Okolle et al., 2010).
INSECT: Lepidoptera: Limacodidae <i>Cania</i> <i>robusta</i> (Hering)	Ustjuzhanin and Kovtunovic h, 2009	Ustjuzhani n and Kovtunovic h, 2009	Leaves (Tong et al., 2006)	No.
INSECT: Lepidoptera: Limacodidae <i>Cania</i> siamensis Tams	Ustjuzhanin and Kovtunovic h, 2009	Vichitranan da et al., 2008	Leaves (Holloway et al., 1987)	No.
INSECT: Lepidoptera: Limacodidae <i>Chalcocelis</i> <i>albiguttatus</i> Snellen	Holloway et al., 1987	Holloway et al., 1987	Leaves (Holloway et al., 1987)	No.
INSECT: Lepidoptera: Limacodidae <i>Parasa</i> <i>lepida</i> Cramer	Trung, 2021	Baringbing and Baringbing , 1994	Leaves (Baringbing and Baringbing, 1994)	No.
INSECT: Lepidoptera: Limacodidae <i>Thosea</i> sinensis (Walker)	Trung, 2021	Dean, 1978	Leaves (Gupta et al., 2016)	No.

Pest name	Presence in Viet Nam	Host association	Plant part(s) ²	Considered further? ³
INSECT: Lepidoptera: Nymphalidae <i>Amathusia</i> <i>phidippus</i> L.	Jaroš and Spitzer, 2008	Waterhous e, 1993	Leaves (Waterhouse, 1993)	No.
INSECT: Lepidoptera: Nymphalidae <i>Elymnias</i> <i>hypermnestra</i> (L.)	Trung, 2021	Boireau, 1995	Leaves (Boireau, 1995)	No.
INSECT: Lepidoptera: Pyralidae <i>Tirathaba</i> <i>rufivena</i> (Walker)	Trung, 2021	Beaudoin- Ollivier et al., 2017	Leaves, flowers (Beaudoin- Ollivier et al., 2017)	No.
INSECT: Lepidoptera: Tortricidae <i>Archips</i> <i>machlopis</i> (Meyrick)	Soumia et al., 2019	Waterhous e, 1993	Leaf (Waterhouse, 1993)	No.
INSECT: Lepidoptera: Zygaenidae Artona catoxantha Hampson	Trung, 2021	Winotai, 2014	Leaves (Winotai, 2014)	No.
INSECT: Orthoptera: Acrididae <i>Chondracris</i> <i>rosea</i> (De Geer)	Trung, 2021	CABI, 2022	Leaves (CABI, 2022)	No.
INSECT: Orthoptera: Acrididae Valanga nigricornis (Burmeister)	CABI, 2022	Benigno and Soewarno, 1985	Leaves (Hadi and Irianto, 2019)	No.
GASTROPOD: Mollusca: Bradybainidae <i>Acusta tourannensis</i> (Soulevet)	Thanh and Do Duc, 2022	Lai, 1984	Stem (Lai, 1984)	No.
BACTERIA <i>'Candidatus</i> Phytoplasma	Alvarez et al., 2013;	Babu et al., 2021	Systemic (Babu et al.,	No.
asteris' 16SrI-B	Harrison and Carpio, 2006		2021)	See section 2.2
NEMATODE Hemicriconemoides	CABI, 2022;	Saeed, 1974	Soil, Root (Saeed, 1974)	No.
mangiferae Siddiqi	MacGowan, 1984			Present in California and Florida (CABI, 2022).

2.2. Notes on pests identified in the pest list

Candidatus Phytoplasma asteris' 16SrI-B is Present in the United States in over 10 states (WPBUS, 2022). No evidence of presence in Puerto Rico or Hawaii. Phytoplasmas are transmissible by grafting and spread naturally by insect vectors (Weintraub and Beanland, 2006). These vectors are highly unlikely to be present with the harvested fruit, or to contact the fruit after entry into the United States. Without vectors, this phytoplasma cannot move from the

imported produce to plants in the field; therefore, the likelihood that this pest will establish is negligible.

2.3. Pests considered but not included on the pest list

Phytophthora meadii (McRae) (Oomycetes: Peronosporales) is not listed in ARM (2022), however, the genus is quarantined. It is found in Vietnam (Stamps, 1984) and has a limited distribution in the United States where it is found only in Hawaii (Aragaki and Uchida, 1994). Coconut fruit was recently shown to be an experimental host (Solpot and Cumagun, 2021), however, there is no evidence it attacks coconut in nature, therefore, we did not include the pest in Table 1.

2.3.1. Organisms with non-quarantine status

We found evidence of organisms that are associated with coconut and are present in Viet Nam; however, they are not of quarantine significance for the United States (see Appendix).

Armored scales (Hemiptera: Diaspididae): These insects are highly unlikely to establish via the fruits or vegetables for consumption pathway due to their very limited ability to disperse to new host plants (Miller et al., 1985; PERAL, 2007). Also, diaspidids on fruits and vegetables for consumption are considered non-actionable at U.S. ports of entry (NIS, 2008). For these reasons, armored scales are included in the Appendix rather than Table 1, even if they are not present in the PRA area.

2.4. Pests selected for further analysis or already regulated

No quarantine pests were identified that could follow the pathway. Thus, no pests were selected for further analysis.

3. Summary

We found no quarantine pests that are likely to follow the pathway.

Our assessment of risk is contingent on the application of all components of the pathway as described in section 1.4. The detailed examination and choice of appropriate phytosanitary measures to mitigate pest risk are addressed in a separate document.

4. Literature Cited

- 7 CFR § 319.56-3. U.S. Code of Federal Regulations, Title 7, Part 319.56-3 (7 CFR § 319.56-3 -General requirements for all imported fruits and vegetables). <u>https://www.govinfo.gov/app/details/CFR-2019-title7-vol5/CFR-2019-title7-vol5-sec319-56-3</u>.
- IPPC. 2021. International Standards for Phytosanitary Measures, Publication No. 11: Pest Risk Analysis for Quarantine Pests. Food and Agriculture Organization of the United Nations, Secretariat of the International Plant Protection Convention (IPPC), Rome, Italy. 36 pp.
- IPPC. 2022. International Standards for Phytosanitary Measures, Publication No. 5: Glossary of Phytosanitary Terms. Food and Agriculture Organization of the United Nations, Secretariat of the International Plant Protection Convention (IPPC), Rome, Italy. 35 pp.
- ACIR. 2022. Agricultural Commodity Import Requirements. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. <u>https://acir.aphis.usda.gov/s/</u>.
- Alvarez, E., J. M. Pardo, J. F. Mejia, A. Bertaccini, N. D. Thanh, and T. X. Hoat. 2013.
 Detection and identification of '*Candidatus* Phytoplasma asteris'-related phytoplasmas associated with a witches' broom disease of cassava in Vietnam. IndianJournals.com 3(2):77-81.
- Aragaki, M., and J. Y. Uchida. 1994. Phytophthora Blight of West Indian Holly. Plant Disease 78(5):523-525.
- ARM. 2022. Agricultural Risk Management (ARM) System. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine.
- Arokiyaraj, C., K. Bhattacharyya, and S. G. E. Reddy. 2022. Toxicity and synergistic activity of compounds from essential oils and their effect on detoxification enzymes against *Planococcus lilacinus*. Frontiers in Plant Science 13:1-14.
- Babu, M., S. Thangeswari, A. Josephrajkumar, V. Krishnakumar, A. Karthikeyan, V. Selvamani, M. Saliya, V. Hedge, H. P. Maheswarappa, and A. Karun. 2021. First report on the association of '*Candidatus* Phytoplasma asteris' with lethal wilt disease of coconut (*Cocos nucifera* L.) in India. Journal of General Plant Pathology 87:16-23.
- Baringbing, W. A., and B. Baringbing. 1994. Studies on host preference of *Parasa lepida* on some cultivars of hybrid coconut in swampy area. CORD 10(02):34-34.
- Beaudoin-Ollivier, L., N. Isidoro, J. A. Jaques, P. Riolo, M. Kamal, and D. Rochat. 2017. Some representative palm pests: ecological and practical data. Handbook of Major Palm Pests: Biology and Management:1-38.
- Bedford, G. 1974. Descriptions of the larvae of some rhinoceros beetles (Col., Scarabaeidae, Dynastinae) associated with coconut palms in New Guinea. Bulletin of Entomological Research 63(3):445-472.
- Bellotti, A. C., C. J. Herrera, M. d. P. Hernández, B. Arias, J. M. Guerrero, and E. L. Melo. 2012. Cassava pests in Latin America, Africa and Asia. The Cassava Handbook:199.
- Boireau, P. 1995. Cannibalisme observé chez des chenilles de *Elymnias hypermnestra* (Lepidoptera: Nymphalidae, Satyrinae). Tropical Lepidoptera Research 6(2):95-97.
- CABI. 2022. Crop Protection Compendium. Commonwealth Agricultural Bureau International (CABI). <u>https://www.cabidigitallibrary.org/product/qc</u>.

- Dao, H. T., G. A. Beattie, G. W. Watson, D. K. Le, T. H. Nguyen, D. V. Nguyen, and P. Holford. 2018. Citrus diaspidids in Viet Nam: New, and confirmation of previous, records based on morphological and molecular verification of taxa. Journal of Asia-Pacific Entomology 21(1):81-96.
- Evans, G. A. 2007. Host plant list of the whiteflies (Aleyrodidae) of the world. United States Department of Agriculture (USDA) - Animal Plant Health Inspection Service (APHIS):290.
- Evans, G. A. 2008. The whiteflies (Hemiptera: Aleyrodidae) of the world. 703 pp.
- Farr, D. F., and A. Y. Rossman. 2022. U.S. National Fungus Collections Database, ARS, USDA. United States Department of Agriculture, Agricultural Research Service. <u>https://nt.ars-grin.gov/fungaldatabases/</u>.
- Firake, D., S. Joshi, G. Behere, G. Momin, N. A. Thakur, and S. Ngachan. 2015. First report of the mealybug *Formicococcus polysperes* (Hemiptera: Pseudococcidae) infesting ginger in India. Entomological News 125(3):179-185.
- Garcia Morales, M., B. D. Denno, D. R. Miller, G. L. Miller, Y. Ben-Dov, and N. B. Hardy. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. http://scalenet.info.
- Govaerts, R., J. Dransfield, S. F. Zona, D. R. Hodel, and A. Henderson. 2014. World Checklist of Arecaceae. In: World Checklist of Arecaceae. Royal Botanic Gardens, London, U.K.
- Gupta, R., R. Sharma, and S. Rani. 2016. Occurrence of *Thosea sinensis* Walker, coconut cup moth,(Lepidoptera: Limacodidae) on apple plantations (*Malus domestica* Borkh.) for the first time in Jammu Province of J & K States. Global Journal of Bio-science and Biotechnology 5(2):261-262.
- Hadi, E., and R. Irianto. 2019. Pests and diseases on forest plant in burned peatlands in South Sumatra. Pages 012071 in IOP Conference Series: Earth and Environmental Science. IOP Publishing.
- Harrison, N. A., and M. L. Carpio. 2006. First Report of "Candidatus Phytoplasma Asteris"-Related Strains Infecting Chinaberry Trees with Leaf Yellowing Symptoms in Vietnam. Plant Disease 90(4):527.
- Health, E. P. o. P., C. Bragard, K. Dehnen-Schmutz, F. Di Serio, P. Gonthier, M. A. Jacques, J. A. Jaques Miret, A. F. Justesen, C. S. Magnusson, and P. Milonas. 2018. Pest categorisation of *Aleurocanthus* spp. EFSA journal 16(10):e05436.
- Holloway, J., M. Cock, and R. Desmier de Chenon. 1987. Systematic account of South-east Asian pest Limacodidae. Slug and Nettle Caterpillars: The biology, taxonomy and control of the Limacodidae of economic importance on palms in South-East Asia. Cab International. Wallingford:15-117.
- Indarwatmi, M., I. Nasution, H. Sasmita, B. Ernawan, E. Ratna, D. Sartiami, and Y. Maharani. 2021. Host range of *Exallomochlus hispidus* (Morrison)(Hemiptera: Pseudococcidae) in West Java, Indonesia. Pages 022113 *in* IOP Conference Series: Earth and Environmental Science. IOP Publishing.
- Jaroš, J., and K. Spitzer. 2008. Annotated checklist of the butterflies (Papilionidae) of the Nam Cat Tien Reserve (South Vietnam). Tropical Lepidoptera Research 18(1):12-16.
- Khoo, K. C., P. A. C. Ooi, and H. C. Tuck. 1991. Crop Pests and their Management in Malaysia. Tropical Press Sdn. Bhd., Kuala Lumpur, Malaysia. 1-242 pp.
- Lai, K. Y. 1984. Study on morphology and ecology of the landsnail Acusta tourannensis (Souleyet). Bulletin of Malacology, Republic of China 10:40-41.

- MacGowan, J. B. 1984. *Hemicriconemoides mangiferae* Siddiqi 1961. Nematology Circular 110:1-2.
- Mathen, K., C. Radhakrishnan Nair, M. Gunasekharan, M. Govindankutty, and J. Solomon. 1988. Stylet course of lace bug *Stephanitis typica* (Distant) in coconut leaf. Proceedings: Animal Sciences 97(6):539-544.
- Miller, D., A. Rung, G. Parikh, G. Venable, A. J. Redford, G. A. Evans, and R. J. Gill. 2014. Scale Insects. *in* Edition 2. USDA APHIS Identification Technology Program (ITP), Fort Collins, CO.
- Miller, D. R., V. L. Blackburn, J. A. Davidson, and W. F. Gimpel, Jr. 1985. Pest risk assessment of armored scales on certain fruit [report submitted to USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine]. United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville, MD. 35 pp.
- Mordue, J., and P. Holliday. 1971. IMI Descriptions of Fungi and Bacteria: *Pestalotiopsis theae* (No. 318). 32.
- NIS. 2008. Change in action status for armored scales (Hemiptera: Diaspididae) on material for consumption (NIS action policy, March 25, 2008). United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, National Identification Services (NIS). 2 pp.
- Okolle, J. N., A. Abu Hassan, M. Mashhor, and L. Tripathi. 2010. Bioecology and management of the banana skipper (*Erionota thrax*). Tree and Forestry Science and Biotechnology 4(1):22-31.
- Paulson, G. S., and B. R. Kumashiro. 1985. Hawaiian Aleyrodidae. Proceedings of the Hawaiin Entomological Society 25:102-124.
- PERAL. 2007. Phytosanitary risks associated with armored scales in commercial shipments of fruit for consumption to the United States, Revision Original. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, Plant Epidemiology and Risk Analysis Laboratory (PERAL), Raleigh, NC. 24 pp.
- PHÁP, I., and N. CÚU. 2011. MỘT SỐ ĐẶC ĐIỀM HÌNH THÁI, SINH HỌC CỦA ONG ENCARSIA OPULENTA Silvestri (HYMENOPTERA: APHELINIDAE) KÝ SINH BỌ PHẤN ĐEN VIỀN TRẮNG ALEUROCANTHUS SPINIFERUS Quaitance TRÊN CÂY BƯỔI DIỄN. HỘI NGHỊ KHOA HỌC TOÀN QUỐC VỀ SINH THÁI VÀ TÀI NGUYÊN SINH VẬT LẦN THỨ 4 Han Noi, Vietnam. 21st October, 2011.
- Saeed, M. 1974. Studies on some stylet-bearing nematodes associated with sapodilla (*Achras zapota* L.), with sepcial reference to *Hemicriconemoides mangifeae* Siddiqi, 1961, University of Karachi, Department of Botany.
- Schrader, G., M. Camilleri, R. M. Ciubotaru, M. Diakaki, and S. Vos. 2019. Pest survey card on *Aleurocanthus spiniferus* and *Aleurocanthus woglumi*. European Food Safety Authority (EFSA) Supporting Publications 16(2):1565E.
- Singh, S., and P. Rethinam. 2004. Coconut hispine beetle *Brontispa longissima* (Gestro)(Coleoptera: Chrysomelidae). CORD 20(01):34-34.
- Siriphanich, J., P. Saradhuldhat, T. Romphophak, K. Krisanapook, S. Pathaveerat, and S. Tongchitpakdee. 2011. 2 Coconut (*Cocos nucifera* L.). Pages 8-35e *in* E. M. Yahia, (ed.). Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing.

- Solpot, T., and C. Cumagun. 2021. Phylogenetic analyses and cross-infection studies of *Phytophthora* species infecting cacao and durian in South-Central Mindanao, Philippines. Journal of Phytopathology 170(1):41-56.
- Soumia, P., N. Dilipsundar, V. Karuppaiah, G. Pandi, and M. Singh. 2019. *Archips machlopis* (Meyrick)(Tortricidae: Lepidoptera)-Occurrence on garlic. Indian Journal of Entomology (2):269-270.
- Stamps, D. J. 1984. CMI Descriptions of Fungi and Bacteria: *Phytophthora meadii* (No. 834). CAB International. 1 pp.
- Stevenson, J. A. 1975. Fungi of Puerto Rico and the American Virgin Islands. 743 pp.
- Suh, S. J. 2016. Armoured scale insects (Hemiptera: Diaspididae) intercepted at the ports of entry in the Republic of Korea over the last 20 years. EPPO Bulletin 46(2):313-331.
- Thanh, B. N., and S. Do Duc. 2022. Thành phần loài thân mềm chân bụng (Gastropoda: Mollusca) ở đảo lan châu và hòn ngư tại cửa lò, tỉnh nghệ an. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY 8(3).
- Tong, Y., S. Y. Lee, and B. Morton. 2006. The herbivore assemblage, herbivory and leaf chemistry of the mangrove *Kandelia obovata* in two contrasting forests in Hong Kong. Wetlands Ecology and Management 14(1):39-52.
- Trung, H. 2021. Information required by APHIS for commodity import request requiring change in regulations (7 CFR 319.5). *in* D. G. P. Mr. Hoang Trung, ed. Ministry of Agriculture and Rural Development, Vietnam.
- Ustjuzhanin, P., and V. Kovtunovich. 2009. The plume moths (Lepidoptera, Pterophoridae) of Vietnam, with description of a new species of *Xyroptila* Meyrick, 1908. Entomofauna, Zeitschrift für Entomologie, Supplement 16, Moths of Vietnam. pp. 3-9. Color plate p. 282.
- Vichitrananda, S., O. Vichailak, V. Kitsukchit, S. Watanayothin, C. Babprasert, T. Trakulthong,
 P. Wongchotsathid, V. Chiansanoi, N. Chomchalow, J. Petchpirun, P. Naka, V.
 Kusolsongkraokul, L. Thongsamsri, P. Wisutapaisarn, K. Manutrangsi, K. Phonkliang,
 and Y. Tinakon. 2008. Good Agricultural Practices for Aromatic Coconut. Pages 43 *in* N.
 B. o. A. C. a. F. S. M. o. A. a. Cooperatives, ed. Published in the Royal Gazette Vol.125
 Section 3D, 50 Phaholyothin Road, Ladyao, Chatuchak, Bangkok 10900
- Waterhouse, D. F. 1993. The major arthropod pests and weeds of agriculture in Southeast Asia: distribution, importance and origin, Australian Centre for International Agricultural Research, Canberra, Australia. 141 pp.
- Weintraub, P., and L. Beanland. 2006. Insect vectors of phytoplasmas. Annual Review of Entomology 51(1):91-111.
- Williams, G. C. 1964. The life-history of the Indian meal-moth, *Plodia interpunctella* (Hübner)(Lep. Phycitidae) in a warehouse in Britain and on different foods. Annals of Applied Biology 53(3):459-475.
- Winotai, A. 2014. Integrated pest management of important insect pests of coconut. CORD 30(1):19-19.
- WPBUS. 2022. Distribution by State. Widely Prevalent Bacteria of the United States (WPBUS). <u>https://www.prevalentbacteria.org/bacteria.cfm</u>.
- Гура, Н., and А. Шипулин. 2021. Изучение отличительных диагностических признаков красной померанцевой щитовки Aonidiella aurantii и близких к ней видов щитовок рода Aonidiella. Фитосанитария. Карантин растений (3):17-33.

5. Appendix: Pests with non-quarantine status

We found evidence that the organisms listed below are associated with coconut and are present in Viet Nam; however, none are of quarantine significance for the United States (ARM, 2022, or as defined by ISPM No. 5). Although we did not intensively evaluate the evidence, we provide references supporting each pest's potential presence in Viet Nam, presence in the United States (if applicable), and association with the coconut. If any of the organisms are **not** present in the PRA area, we also provided justification for their non-quarantine status. Unless otherwise noted, these organisms are non-actionable at U.S. ports of entry (ARM, 2022).

Organism	In Viet	In U.S.	Host	Notes
MITE, Trombidiformos		CADI	Association	
Tonuinalnidaa Provingloug	CABI,	CABI,	CADI, 2022	
rhoenicis (Goijskos)	2022	2022		
pnoenicis (Geijskes)				
INSECT: Coleoptera: Anthribidae	CABI,	CABI,	CABI, 2022	
Araecerus fasciculatus (DeGeer)	2022	2022		
INSECT: Coleoptera: Silvanidae	CABI,	CABI,	CABI, 2022	
Oryzaephilus surinamensis	2022	2022		
(Linnaeus)				
INSECT: Coleoptera:	CABI,	CABI,	CABI, 2022	
Tenebrionidae Tribolium	2022	2022		
castaneum (Herbst)				
INSECT: Hemiptera: Aleyrodidae	CABI,	CABI,	CABI, 2022	
Aleurodicus dispersus Russell	2022	2022		
INSECT: Hemiptera: Aphididae	CABI,	CABI,	CABI, 2022	
Aphis gossypii Glover	2022	2022		
INSECT: Hemiptera: Coccidae	CABI,	CABI,	CABI, 2022	
Ceroplastes floridensis Comstock	2022	2022		
INSECT: Hemiptera: Coccidae	Garcia	Not	Garcia	
Ceroplastes stellifer Westwood	Morales et	present in	Morales et	
	al., 2016	the U.S.	al., 2016	
INSECT: Hemiptera: Coccidae	Garcia	Not	Garcia	
Coccus hesperidum (Linnaeus)	Morales et	present in	Morales et	
	al., 2016	the U.S.	al., 2016	
INSECT: Hemiptera: Coccidae	Garcia	Not	Garcia	
Coccus viridis (Green)	Morales et	present in	Morales et	
	al., 2016	the U.S.	al., 2016	
INSECT: Hemiptera: Coccidae	Garcia	Garcia	Garcia	
Eucalymnatus tessellatus	Morales et	Morales	Morales et	
(Signoret)	al., 2016	et al.,	al., 2016	
		2016		
INSECT: Hemiptera: Coccidae	Garcia	Garcia	Garcia	
Milviscutulus mangiferae (Green)	Morales et	Morales	Morales et	
	al., 2016	et al.,	al., 2016	
		2016		

Organism	In Viet	In U.S.	Host	Notes
NEECT: Homintana, Cassidas		Caraia	Association	
Parasaissatia nigra (Nietner)	1 rung, 2021	Morales	Garcia Morales et	
<i>i urusuissettu nigru</i> (ivietter)	2021	et al	al 2016	
		2016	ul., 2010	
INSECT: Hemiptera: Coccidae	Garcia	Garcia	Garcia	
Prococcus acutissimus (Green)	Morales et	Morales	Morales et	
	al., 2016	et al.,	al., 2016	
		2016	~ ·	
INSECT: Hemiptera: Coccidae	Trung,	Garc1a	Garcia	
Saissetia coffeae (Walker)	2021	Morales	Morales et	
		2016	al., 2010	
INSECT: Hemiptera: Coccidae	Garcia	Garcia	Garcia	Action only when
Vinsonia stellifera Westwood	Morales et	Morales	Morales et	destined to Guam,
	al., 2016	et al.,	al., 2016	Samoa (ARM, 2022)
		2016		
INSECT: Hemiptera:	Dao et al.,	Garcia	Garcia	
Diaspididae ⁺ Aonidiella aurantii	2018	Morales	Morales et	
(Maskell)		et al., 2016	al., 2016	
INSECT: Hemiptera:	Garcia	N/A	Garcia	Present in the U.S.
Diaspididae ⁴ Aonidiella comperei	Morales et		Morales et	Virgin islands (Garcia
Mckenzie	al., 2016		al., 2016	Morales et al., 2016)
INSECT: Hemiptera:	Dao et al.,	N/A	Garcia	
Diaspididae ⁴ Aonidiella inornata	2018		Morales et	
Mckenzie NSECT: Hamintana	Sub 2016.	Carala	al., 2016	Durant in Elanida
Disspididae ⁴ Achidialla orientalia	Sun, 2016;	Garcia Morales	Garcia Morales et	Present in Florida, Puerto Pico, and US
(Newstead)	1 ура ано Шипупин	et al	al 2016	Virgin Islands (Garcia
(incustoud)	, 2021	2016	ul., 2010	Morales et al., 2016)
INSECT: Hemiptera:	Trung,	Garcia	Garcia	
Diaspididae ⁴ Aspidiotus	2021	Morales	Morales et	
destructor Signoret		et al., 2016	al., 2016	
INSECT: Hemiptera:	Dao et al.,	Garcia	Garcia	
Diaspididae ⁴ Aspidiotus excisus	2018	Morales	Morales et	
Green		et al.,	al., 2016	
		2016		
INSECT: Hemiptera:	Trung,	Garcia	Garcia	Present in Florida
Diaspididae ⁺ Aulacaspis	2021	Morales	Morales et	(Garcia Morales et al.,
<i>iubercularis</i> Newstead		et al., 2016	al., 2016	2016)
INSECT: Hemiptera:	Dao et al.,	N/A	Dao et al.,	
Diaspididae ⁴ Lepidosaphes	2018		2018	
karkarica Williams & Watson				

⁴ All armored scales (Diaspididae) are non-actionable at U.S. ports of entry on fruits and vegetables for consumption (NIS, 2008). Therefore, we did not need to determine whether they occur in the United States.

Organism	In Viet	In U.S.	Host	Notes
8	Nam		Association	
INSECT: Hemiptera:	Trung,	Garcia	Garcia	
Diaspididae ⁴ Chrysomphalus	2021	Morales	Morales et	
aonidum (Linnaeus)		et al.,	al., 2016	
		2016	,	
INSECT: Hemiptera:	CABI,	Garcia	Garcia	
Diaspididae ⁴ Chrysomphalus	2022	Morales	Morales et	
dictyospermi (Morgan)		et al.,	al., 2016	
		2016		
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁴ Hemiberlesia	Morales et	Morales	Morales et	
lataniae (Signoret)	al., 2016	et al.,	al., 2016	
	~ .	2016	~ .	
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁴ Hemiberlesia	Morales et	Morales	Morales et	
palmae (Cockerell)	al., 2016	et al.,	al., 2016	
	<u> </u>	2016	<u> </u>	
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁺ Lepidosaphes beckii	Morales et	Morales	Morales et	
(Newman)	al., 2016	et al.,	al., 2016	
DIOFOT II	<u> </u>	2016	<u> </u>	
INSEC1: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae Lepiaosaphes	Morales et	Morales	Morales et	
gioverii (Packard)	al., 2016	2016	al., 2016	
INSECT: Hamintara:	Garaia	Garcia	Garaia	
Diaspididae ⁴ Parlatoria zizinhi	Morales et	Morales	Morales et	
(Lucas)	a1 2016	et al	a1 2016	
(Lucus)	di., 2010	2016	di., 2010	
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁴ Pinnaspis	Morales et	Morales	Morales et	
aspidistrae (Signoret)	al., 2016	et al.,	al., 2016	
	,	2016	,	
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁴ Pinnaspis strachani	Morales et	Morales	Morales et	
(Cooley)	al., 2016	et al.,	al., 2016	
		2016		
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Diaspididae ⁴ Pseudaonidia	Morales et	Morales	Morales et	
trilobitiformis (Green)	al., 2016	et al.,	al., 2016	
		2016	a :	
INSECT: Hemiptera:	Trung,	Garcia	Garcia	
Diaspididae Pseudaulacaspis	2021	Morales	Morales et	
cockerelli (Cooley)		et al., 2016	al., 2016	
INSECT: Homintors:	Garaia	2010 Garaic	Garcia	
niseur. neinipiera: Disspididas ⁴ Psaudaulagaspis	Garcia Moralas et	Moralas	Moralas at	
nantagona (Targioni Tozzetti)	$_{\rm al}$ 2016	et al	20101a105 ct	
pennagona (rargioni rozzeni)	un, 2010	2016	ui., 2010	

Organism	In Viet	In U.S.	Host	Notes
INSECT: Hemintera:	Nam Trung	CADI	Association	
Diaspididae ⁴ Unaspis citri	2021	2022	CADI, 2022	
(Comstock)	2021	2022		
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Margarodidae <i>Icerva purchasi</i>	Morales et	Morales	Morales et	
Maskell	al., 2016	et al.,	al., 2016	
		2016		
INSECT: Hemiptera:	Trung,	Garcia	Garcia	
Pseudococcidae Dysmicoccus	2021	Morales	Morales et	
brevipes (Cockerell)		et al.,	al., 2016	
		2016	~ ·	
INSECT: Hemiptera:	Trung,	Garcia	Garcia	
Pseudococcidae <i>Ferrisia virgata</i>	2021	Morales	Morales et	
(Cockerell)		et al.,	al., 2016	
INSECT: Hemintera:	Garcia	Garcia	Garcia	
Pseudococcidae <i>Nipaecoccus</i>	Morales et	Morales	Morales et	
ninge (Maskell)	al 2016	et al	al 2016	
mpue (Musicen)	un, 2010	2016	un, 2010	
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Pseudococcidae Planococcus citri	Morales et	Morales	Morales et	
(Risso)	al., 2016	et al.,	al., 2016	
· · · · · · · · · · · · · · · · · · ·		2016		
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Pseudococcidae Planococcus	Morales et	Morales	Morales et	
minor (Maskell)	al., 2016	et al.,	al., 2016	
DIOFOT II	<u> </u>	2016	<u> </u>	
INSECT: Hemiptera:	Garcia	Garcia Maralag	Garcia Moreles et	
iackhoardslavi Gimpol & Miller	$a_1 2016$	worales	$\frac{1}{2016}$	
juckbeurusteyi Ohinper & Whiter	al., 2010	2016	al., 2010	
INSECT: Hemiptera:	Trung.	Garcia	Garcia	
Pseudococcidae <i>Pseudococcus</i>	2021	Morales	Morales et	
longispinus (Targioni Tozzetti)		et al.,	al., 2016	
		2016		
INSECT: Hemiptera:	Garcia	Garcia	Garcia	
Pseudococcidae Saccharicoccus	Morales et	Morales	Morales et	
sacchari (Cockerell)	al., 2016	et al.,	al., 2016	
	~	2016		
INSECT: Hymenoptera:	CABI,	CABI,	CABI, 2022	
Formicidae Tapinoma	2022	2022		
meianocephalum (Fabricius)	Tana	CADI	CADI 2022	
Cadra cautalla (Walker)	1 rung, 2021	CABI, 2022	CABI, 2022	
INSECT: Lepidontera: Duralidae		CARI	Williams	
Plodia internunctella (Hühner)	2022	2022	1964	
			1701	

Organism	In Viet	In U.S.	Host	Notes
C	Nam		Association	
INSECT: Thysanoptera:	CABI,	CABI,	CABI, 2022	
Thripidae Heliothrips	2022	2022		
haemorrhoidalis (Bouche)				
FUNGUS	CABI,	CABI,	CABI, 2022	
Ceratocystis paradoxa (Dade) C.	2022	2022		
Moreau				
FUNGUS	CABI,	Farr and	Farr and	
<i>Certatocystis fimbriata</i> Ellis &	2022	Rossman,	Rossman,	
Halst.		2022	2022	
FUNGUS	Farr and	Farr and	Farr and	
Colletotrichum	Rossman,	Rossman,	Rossman,	
gloeosporioides (Penz.) Penz. &	2022	2022	2022	
Sacc., syn.: Glomerella cingulata				
(Stoneman) Spauld. & H. Schrenk				
FUNGUS	Farr and	Farr and	Farr and	
Curvularia lunata (Wakker)	Rossman,	Rossman,	Rossman,	
Boedijn, syn. Cochliobolus	2022	2022	2022	
lunatus R.R. Nelson & Haasis				
FUNGUS	CABI,	Farr and	Farr and	
Fusarium fujikuroi Nirenberg	2022	Rossman,	Rossman,	
		2022	2022	
FUNGUS	CABI,	CABI,	CABI, 2022	
Lasiodiplodia theobromae (Pat.)	2022	2022		
Griffiths & Maubl.				
FUNGUS	Mordue	Mordue	Farr and	This pest is not listed
Pseudopestalotiopsis theae	and	and	Rossman,	in ARM. It is found in
(Sawada) Maharachch., K.D.	Holliday,	Holliday,	2022	Hawaii.
Hyde & Crous	1971	1971		
FUNGUS	Govaerts	Farr and	Stevenson,	This pest is not listed
Rigidoporus microporus (Sw.:	et al.,	Rossman,	1975	in ARM.
Fr.) Overeem	2014	2022		
FUNGUS	CABI,	Farr and	Farr and	
Thanatephorus cucumeris (A.B.	2022	Rossman,	Rossman,	
Frank) Donk, syn.: <i>Rhizoctonia</i>		2022	2022	
solani J.G. Kuhn	CADI	CADI	CADL 2022	
CHROMISTA	CABI,	CABI,	CABI, 2022	
Phytophthora	2022	2022		
<i>cactorum</i> (Lebert &				
Conn) J. Schrot.	F 1	F 1	F 1	
	Farr and	Farr and	Farr and	
Phylophinora palmivora (E.J.	Kossman,	Kossman,	Kossman,	
Butler) E.J. Butler	2022 CADI	2022 CADI	2022 CADL 2022	
NEMATODE Helicoteleus de la diference (C. 11)	CABI,	CABI,	CABI, 2022	
<i>Heilcotylenchus alhystera</i> (Cobb)	2022	2022		
	CADI	CADI	CADI 2022	
Malaidamma inaganita (Vafa: 1 9	CABI,	CABI,	САВІ, 2022	
Meiolaogyne incognila (Kolold &	2022	2022		
winte) Unitwood				

Organism	In Viet	In U.S.	Host	Notes
NEMATODE		CABI	CABL 2022	
Pratylenchus	2022	2022	C/1D1, 2022	
<i>brachvurus</i> (Godfrey)	2022	2022		
Filipev & Schuurmans				
Stekhoven				
NEMATODE	CABI,	CABI,	CABI, 2022	
Pratylenchus coffeae	2022	2022		
(Zimmermann) Filipev				
& Schuurmans				
Steckhoven				
NEMATODE	CABI,	CABI,	CABI, 2022	
Pratylenchus zeae Graham	2022	2022		
NEMATODE	CABI,	CABI,	CABI, 2022	
Rotylenchus reniformis Linford &	2022	2022		
Oliveira				
NEMATODE	CABI,	CABI,	CABI, 2022	
Xiphinema americanum Cobb	2022	2022		